51 research outputs found

    Sub-optimal boundary control of semilinear pdes using a dyadic perturbation observer

    Get PDF
    In this paper, we present a sub-optimal controller for semilinear partial differential equations, with partially known nonlinearities, in the dyadic perturbation observer (DPO) framework. The dyadic perturbation observer uses a two-stage perturbation observer to isolate the control input from the nonlinearities, and to predict the unknown parameters of the nonlinearities. This allows us to apply well established tools from linear optimal control theory to the controlled stage of the DPO. The small gain theorem is used to derive a condition for the robustness of the closed loop system

    Robust Adaptive Boundary Control of Semilinear PDE Systems Using a Dyadic Controller

    Get PDF
    In this paper, we describe a dyadic adaptive control (DAC) framework for output tracking in a class of semilinear systems of partial differential equations with boundary actuation and unknown distributed nonlinearities. The DAC framework uses the linear terms in the system to split the plant into two virtual sub-systems, one of which contains the nonlinearities, while the other contains the control input. Full-plant-state feedback is used to estimate the unmeasured, individual states of the two subsystems as well as the nonlinearities. The control signal is designed to ensure that the controlled sub-system tracks a suitably modified reference signal. We prove well-posedness of the closed-loop system rigorously, and derive conditions for closed-loop stability and robustness using finite-gain L stability theory

    Sub-Optimality of a Dyadic Adaptive Control Architecture

    Get PDF
    The dyadic adaptive control architecture evolved as a solution to the problem of designing control laws for nonlinear systems with unmatched nonlinearities, disturbances and uncertainties. A salient feature of this framework is its ability to work with infinite as well as finite dimensional systems, and with a wide range of control and adaptive laws. In this paper, we consider the case where a control law based on the linear quadratic regulator theory is employed for designing the control law. We benchmark the closed-loop system against standard linear quadratic control laws as well as those based on the state-dependent Riccati equation. We pose the problem of designing a part of the control law as a Nehari problem. We obtain analytical expressions for the bounds on the sub-optimality of the control law

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Robotic Herding of a Flock of Birds Using an Unmanned Aerial Vehicle

    Get PDF
    In this paper, we derive an algorithm for enabling a single robotic unmanned aerial vehicle to herd a flock of birds away from a designated volume of space, such as the air space around an airport. The herding algorithm, referred to as the m-waypoint algorithm, is designed using a dynamic model of bird flocking based on Reynolds’ rules. We derive bounds on its performance using a combination of reduced-order modeling of the flock's motion, heuristics, and rigorous analysis. A unique contribution of the paper is the experimental demonstration of several facets of the herding algorithm on flocks of live birds reacting to a robotic pursuer. The experiments allow us to estimate several parameters of the flocking model, and especially the interaction between the pursuer and the flock. The herding algorithm is also demonstrated using numerical simulations

    Controlled transitory or sustained gliding flight with dihedral angle and trailing flaps

    Get PDF
    A micro aerial vehicle capable of controlled transitory or sustained gliding flight. The vehicle includes a fuselage. A pair of articulated wings are forward of a center of gravity of the vehicle, the wings being articulated and having trailing edge flaps, and having actuators for controlling the dihedral angles of the wings and the flaps for effective yaw control across the flight envelope. The dihedral angles can be varied symmetrically on both wings to control the aircraft speed independently of the angle of attack and flight-path angle, while an asymmetric dihedral setting can be used to control yaw and the actuators control the dihedral settings of each wing independently. The aircraft lacks a vertical tail or other vertical stabilizer

    Robust Adaptive Boundary Control of Semilinear PDE Systems Using a Dyadic Controller

    Get PDF
    In this paper, we describe a dyadic adaptive control (DAC) framework for output tracking in a class of semilinear systems of partial differential equations with boundary actuation and unknown distributed nonlinearities. The DAC framework uses the linear terms in the system to split the plant into two virtual sub-systems, one of which contains the nonlinearities, while the other contains the control input. Full-plant-state feedback is used to estimate the unmeasured, individual states of the two subsystems as well as the nonlinearities. The control signal is designed to ensure that the controlled sub-system tracks a suitably modified reference signal. We prove well-posedness of the closed-loop system rigorously, and derive conditions for closed-loop stability and robustness using finite-gain L stability theory

    Controlled transitory or sustained gliding flight with dihedral angle and trailing flaps

    Get PDF
    A micro aerial vehicle capable of controlled transitory or sustained gliding flight. The vehicle includes a fuselage. A pair of articulated wings are forward of a center of gravity of the vehicle, the wings being articulated and having trailing edge flaps, and having actuators for controlling the dihedral angles of the wings and the flaps for effective yaw control across the flight envelope. The dihedral angles can be varied symmetrically on both wings to control the aircraft speed independently of the angle of attack and flight-path angle, while an asymmetric dihedral setting can be used to control yaw and the actuators control the dihedral settings of each wing independently. The aircraft lacks a vertical tail or other vertical stabilizer

    Flight Mechanics of a Tail-less Articulated Wing Aircraft

    Get PDF
    This paper explores the flight mechanics of a Micro Aerial Vehicle (MAV) without a vertical tail. The key to stability and control of such an aircraft lies in the ability to control the twist and dihedral angles of both wings independently. Specifically, asymmetric dihedral can be used to control yaw whereas antisymmetric twist can be used to control roll. It has been demonstrated that wing dihedral angles can regulate sideslip and speed during a turn maneuver. The role of wing dihedral in the aircraft's longitudinal performance has been explored. It has been shown that dihedral angle can be varied symmetrically to achieve limited control over aircraft speed even as the angle of attack and flight path angle are varied. A rapid descent and perching maneuver has been used to illustrate the longitudinal agility of the aircraft. This paper lays part of the foundation for the design and stability analysis of an agile flapping wing aircraft capable of performing rapid maneuvers while gliding in a constrained environment
    • …
    corecore